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The scaling behavior of linear polymers in disordered media modeled by self-avoiding random walks
(SAWSs) on the backbone of two- and three-dimensional percolation clusters at their critical concenpations
is studied. All possible SAW configurations &f steps on a single backbone configuration are enumerated
exactly. We find that the moments of ordof the total number of SAWSs obtained by averaging over many
backbone configurations display multifractal behavior; i.e., different moments are dominated by different
subsets of the backbone. This leads to generalized coordination numparsl enhancement exponens,
which depend om. Our numerical results suggest that the relafign- p.u between the first moment; and
its regular lattice counterpagt is valid.

PACS numbds): 61.41+¢, 05.40--a, 61.43]

I. INTRODUCTION an appropriate finite-size scaling procedure to determine the

Th i f how i | beh : di relevant exponents. Since “infinitely” long chains can only
€ question o how finéar Polymers benave In a diSOqy;qt o the backbone of the cluster, where dangling ends are
dered medium has attracted much attention in recent year

. X ) ; A" 3bsent on all length scales, we study the SAWSs directly on
The problem is not only interesting from a theoretical pointye packhone. This enables us to generate longer chains on a
of view, but may also be relevant for understanding transporgiyen cluster and to average over a larger set of different
propertles_of polymeric chains in porous _medla, such as ercluster configurations.
hanced oil recovery, gel electrophoresis, gel permeation gpecifically, we enumerate all possible SAW configura-
chromatography, etd.1-4]. In this context, it is useful to tions of N steps for a single backbone and study different
learn about the static or conformational properties of lineaimoments of the total number of SAWs and their end-to-end
chains, modeled by self-avoiding walkSAWSs), in the pres-  distance by averaging over many different backbone con-
ence of quenched disorder, e.g., how the surrounding strudigurations. Our analysis shows that the critical exponents
tural disorder influences their spatial configuration. As aand v, do not depend on the ordgrof the moments, while
quite general model of a random medium, percolaf®n8]  the enhancement exponents and the effective coordination
may be considered the paradigm for a broad class of disonumbers do depend ap leading to multifractal behavior. In
dered systems and has therefore been mostly used so far. particular, we find that the first moment of the effective co-
We are interested in how the statistical behavior of SAWsrdination numbej, satisfiesu,=p.u, wherew is the ef-
on percolation clusters at criticalityp& po) differs from  fective coordination number of the underlying regular lattice,
their behavior on regular lattices. While the values of theresolving previous controversies. The mean structural distri-
exponents for SAWs on regular lattices are well establishetpution functions for the end-to-end distance afteisteps,
[1,9-17, there is no complete agreement about their value$oth in Euclidean and topological space, are obtained nu-
on percolation clusters g, [13,14. Here we study(i) the = merically, supporting the expected scaling forft$§,16.
so-called effective coordination number of the cluster, where The paper is organized as follows: In Sec. II, we briefly
contradicting results have been reported using different nureview the main relevant properties of SAWs on regular lat-
merical techniques. Next we considg@in the enhancement tices to illustrate the different numerical procedures em-
exponenty and (i) the exponents, and v, , characterizing ployed in this work. In Sec. Ill, we present results for the
the end-to-end distance of SAWs in theand|-space met- total number and the mean end-to-end distance of SAWs on
rics. Finally, we determingiv) the values of the critical ex- the backbone of the incipient percolation cluster. The corre-
ponents describing the corresponding structural distributioponding distribution functions of the end-to-end distance
functions. and their scaling behavior, in Euclidean and topological
We concentrate on SAWSs on percolation clusterpah ~ space, are also discussed. Finally, in Sec. IV we summarize
two and three dimensions. In the literature, two distinctour main results.
methods have been used for evaluating SAWSs: Exact enu-
meration(EE) and Monte CarldMC) simulation. In the EE
technique,all SAW configurations on a given cluster are
taken into account, but only relatively short chains can be In this section, we illustrate the different numerical tech-
evaluated. In a MC simulation, longer chains can be studiedhiques we use in the following sections by briefly reviewing
but inherently the ensemble of configurations remains inthe main results for SAWs on regular lattices. The main idea
complete. Here we use the EE technique in combination witlis to show that our finite-size scaling, employed in the later

II. SAWS ON REGULAR LATTICES REVIEWED
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FIG. 1. The total numbeCy of SAW configurations on the

square lattice plotted as (@)/N versusN, from the presently on the square lattice. The continuous line is drawn as a guide and its

available exact enumeration results g, N<51[17]. The con- : - )

. . - ) : . slope has the theoretical valug=3/4. In the inset, the successive

tinuous line corresponds to a numerical fit obtained in the rangeslopeSV —dInT{N)/dIn N are plotted versus I, A linear extrapo
< i J i =2. =1. =1.35. . P . T - ) )

10<N=51 using Eq(2), with 1 =2.641,y=1.3, andA=1.35 lation of the points to the limit M—0 yields our estimate/r

sections, enables us to obtain quite accurate estimates for tied-745+0.005, consistent with the value 3/4.

critical exponents based on EE results for relatively short

chains. Here we consider the case 2, which is particularly TIN)=N"¥, ©)
suitable since many results are known exactly.

FIG. 2. The mean end-to-end distang®l) versusN for SAWs

with the universal exponeni-=3/4 ind=2 as suggested by
Flory [9]. In Fig. 2, we show values far(N) versusN ob-
tained by the EE techniqyd7]. The asymptotic value forg

The total numbelCy of SAW configurations olN steps  (see also Table)lis obtained using successive slopes, as
behaves afl1] shown in the inset of Fig. 2, and is in excellent agreement

A NNyl with the theoretical prediction.
Cn=Au N5, 1) More detailed information about the spatial structure of

wherep is the effective coordination number of the lattige, SAWS is given by the distribution functioR(r,N), where
is the universal enhancement exponent, Arid a constant. P(7,N)dr is the probability that afteN steps, the end-to-end
To determineu, v, andA, we choose to study the behavior of distance of a chain is betweenandr+dr. This quantity
the quantity obeys the scaling forrfil1,12]

A. Total number of SAW configurations Cy

INnCy InA InN 1 )
N :W—l—ln,u,-l-('y—l)W (2) P(raN) rf(r/N F) (4)

as a function oN. Figure 1 shows that for the square lattice, and is normalized according tfh;drP(r,N)=1. The ana-
the values forw and y obtained by fitting the EE data using lytic form of the scaling functiorf(x) is known asymptoti-
Eq. (2) agree well with the accepted values reported in thecally:
literature(see Table)l

x91td x<1

f(x
(0= x%2*tdexp —cx?), x>1,

®)

B. Mean end-to-end distance
and structural distribution
function where g,=(y—1)/ve [21], g,=6(d(ve—1/2)—(y—1))
[22], and 6= 1/(1— vg) [10]. Values for these exponents are
summarized in Table I. We have verified these predictions
by enumerating all SAW configurations fof=23 and 24
and calculating the corresponding distributiofgr,N),
TABLE I. Structural parameters for SAWs on regular lattices in from which we have extracted the different exponeisese
d=2. Results of the present simulations obtained on the squarBig. 3). We show that a more accurate determination of the
lattice, compared with the accepted values from the literature. exponentg, compared to a simple fit using E¢) can be
obtained by employing a specific numerical procedure de-

The root mean-square end-to-end distance of SAWN of
steps,T(N)=[r?(N)]"?, averaged over all possible SAW
configurations behaves as

Literature Present results scribed in Appendix A(see inset of Fig. 8 The obtained
N 43/3% 1.30-0.05 values are in agreement with the theoretical predictises
2.6385-0.000F 2.641+0.005 Table ).
C
VF 1?_72141 0'74%0'005 I1l. SAWS ON THE BACKBONE OF
91 0.4x0.1 THE INCIPIENT PERCOLATION
9 5/8° 0.61+0.05 CLUSTER
) 4 4505
Next, we consider SAWs on the incipient percolation
*Referencd 18]. ‘Referencd21]. cluster by generating all SAW configurations directly on the
PReference$19,20. *Referencd22]. backbone of the cluster. We obtain the backbone of a given

‘Referencd9]. 'Referencd 10]. cluster grown by the Leath algorithiiz3,24] by randomly
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the chemical distandebetween two backbone sites separated
by the Euclidean distanaeincreases withr as[27,2§

| oc r dmin, (6)

whered,,;;=1.1306-0.0003 ind=2 [29] and d,,;;,=1.374
+0.004 ind=3 [30]. Thus Eq.6) yields the scaling relation
between the two metrics, which will be used in what follows.
Numerically it is found that data obtained inspace show
less fluctuationscf., e.g.,[15]). Therefore more accurate es-
timates for many characteristic quantitiésuch as critical
FIG. 3. The structural distribution function of SAWSP (r,N) exponents in r space can be determined by studying the

versus r/N" with ve=3/4, for N=23 (diamonds and N=24 corresponding quantity it space.and t_ransforming it to .
(circles on the square lattice. The dashed line in the ranger ~ SPace. For example, the fractal dimension of the backbone in

<1 has a slopg,;+d=2.4, and the one for/N"*>1 is a fit with | space isd’=1.45+0.01 ind=2 anddP=1.36+0.02 ind

rP(nN)

107" 10°
r/NF

Eq. (5), for x>1, yielding g,+d=2.9+0.4, §=4.5+0.8, andc  =3. Using Eq.(6), this leads to the valued?=dPd.,
=0.7+0.1. In the inset, we show the functiomP(r,N) =1.64+0.02 andd?=1.87+0.03 in r space, respectively
=b@+D(QB) " rP(r,N)exd (bY°r/N"F)®]=b(r/N"?)? versus [26].

b¥°r/N"F, following the procedure described in Appendix A, allow-

ing & more precise determination g. For our estimate of the A. Total number of SAW configurations: Multifractality
crossover valuez=0.4, the continuous line has a slogg+d .

=2.61+0.05, in agreement with the theoretical valsee Table)l Due to the disordered structure of the clusters, the total

numberCy g of SAW configurations that are generated on a
choosingoneof the sites of the last grown cluster sh@lg., single backbone, with the se&wbf the cluster as the starting

site A in Fig. 4 and determining the backbone between Sitepoint, fluctuates strongly among different backbone configu-
A and the seed of the clustésite Sin Fig. 4) by the burning rations. To characterize these fluctuations, we study the mo-
procedure described [25,26. The SAWs start at the se&  MeNts(Cg). A similar study on percolation clusters at
of the cluster. To avoid finite size effects, the chemical dis-Criticality has been performed for “ideal” chains; i.e., chains
tance between both end poirisand A of the backbone is that can intersect themselves. This model leads to a non-
chosen to be at least 20 times larger than the chemical lengffiVial dependence og [31].

of the SAWSs. The large ratio between both chemical lengths " generalizing Eq(1), we make the ansatz

is negded, since close to. the end pdint.he backbone has a (CY yla=A PN )
quasilinear structure, which would falsify the results for the N.B arq '

SAWSs. The straightforward idea to usdl sites on the last whereu, are the generalized effective coordination numbers

grown shell as end points for the backbone does not help, byt 1,6 'hackpone ang, the generalized enhancement expo-
introduces boundary effects in the opposite direction, SINCR ants. Results for di&erent values gfare shown in Figs.

ie?nglhiSO?r?t?s? (t:?[ezgfckbone coincides with the cluster near thg(a) and Jb) for the square and simple cubic lattice, respec-

L tively, employing the numerical procedure described in Sec.
We analyze the results for SAWs on the incipient PErco- A “The values forug and y, are displayed in Fig. 6 for

lation cluster by applying analogous numerical procedlljreazz, clearly revealing a dependence grreminiscent of a
on the data as described above for SAWs on regular lattices, .t~ <\ "behavior. For large negative valuesgpfback-

In contrast to the case of regular lattices, on a percolatiorg)One configurations with a small number of SAW configu-

cluster two different metrics can be defined: the Euclideaq,ationsc are singled out in the averaging procedure. We
metric and the topological or chemical metric. On averageg thath,i’LB—>1 and y,—1 for g— —, pointing to rar.e
q q '

configurations of backbones with an almost linear shape. On
the contrary, for large values a@f the averaging procedure
emphasizes backbone configurations with a large number of
SAW configurationsCy g. Since these backbones are the
most compact onegq and y, are strongly enlarged. Figure

6 seems to suggest that the structure of the most compact
backbone differs distinctively from the structure of a regular
square lattice, as lijp1,.. uq~1.9, which is well below the
value for u on the regular square lattice, and }im, vy,
~1.7 is well above the value foy on the regular square
lattice.

These results resolve earlier controversies regarding the
values for bothu and y for percolation obtained from MC
simulations and by EE techniques. For the square lattice, for

FIG. 4. A percolation cluster on the square lattibgll squarey ~ €xample, the valuesupedEE)=1.53+0.05 [32] and
and its corresponding backbone between the sadd a siteA  Yperd EE)=1.33+0.02 [33] have been obtained from exact
randomly chosen on the last grown shell. enumeration calculations, while from MC simulations the
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FIG. 5. Generalized momen{€y, g) of the total numbeCy g
of SAW configurations on the backbone of critical percolation clus-
ters, plotted as (N)In[(C&BWq] versusN. (a) On the square lat-
tice, forg=2, 1, 0.5, 0,~-0.5, —1, and—2 (from top to bottony; (b)
on the simple cubic lattice, faq=1 (top) andg=0 (bottom). Av-

erages over T0backbone configurations each are performed. The

continuous lines are the best fits based on &g, yielding the
values forug and yq for g=0 and 1 given in Table Il. Some
representative values far,, in addition to those reported in Table
I, are y_,=1.15+0.05, y_;=1.23+0.05, andy,=1.36+0.05 in
d=2. Values ofA, are found to fluctuate in the range 1.0-1.3 in
bothd=2 andd=3.

values ppedMC)=1.4590.003 and ypeMC)=1.31
+0.03 [34] were determined. We fingv;=1.565*0.005,
v1=1.34+0.05, and uy=1.456+0.005, y,=1.26+0.05,

LINEAR POLYMERS IN . .. 6861

the ensemble(the so-called “quenched” averageThis
quenched average is usually described by a logarithmic av-
erage, i.e.{Cy g)yp=expInCyg), and is equivalent to the
limit g—0 of Eq. (7); i.e., lim, o(Cf; g)*=exp(In Cy ).
Indeed, our results are in excellent agreement, in dett2
andd= 3, with the relation

H1= Pei, (8
where u is the effective coordination number of the under-
lying regular lattice,p,=0.592 7460 for the square lattice
[35] andp.=0.311 605 for the simple cubic latti¢86]. This
relation, which was originally suggested in the foume.
=p.m [34], could not be confirmed earlier on because of the
different values obtained fo ... Because of the possible
existence of rare events playing a dominant role in the aver-
age procedure, we have performed a detailed analysis of our
numerical data to confirm that we have considered a suffi-
ciently large set of cluster configuratiofisf. Appendix B.

B. Mean end-to-end distances
and structural distribution
functions

Next we study the scaling behavior of the distribution
functions for the end-to-end distancéPg(l,N)) and
(Pg(r,N)), averaged over many backbone configurations,
where Pg(1,N)dl is the probability that afteN steps, the
chemical end-to-end distance of a chain on a single backbone
is betweenl and |+dl, and Pg(r,N)dr is the analogous
quantity inr space. These distribution functions are expected
to obey scaling forms similar to the one valid on regular
lattices, Eq.(4), with the corresponding scaling exponents

[15]. The mean chemical end-to-end distagbeN)) and the

corresponding to the EE and MC results, respectively. Thigoot_zmeanl;square Euclidean end-to-end distaqogN))
can be understood by noting that EE calculations yield by={[r*(N)]"? scale withN as

definition the whole ensembléhe so-called “annealed” av-
erage, corresponding to the cage=1; i.e., the normal arith-
metic average. In contrast, MC simulations intrinsicly

sample only a small subset of all possible configurations,

omitting rare configurations, yielding “typical” subsets of
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FIG. 6. The effective coordination numbegg, and enhance-
ment exponentsy, versusq for —10<q=<10 in d=2 obtained
from Fig. 5a). Expect fory, for =2, the error bars are smaller
than the symbol sizes. The values ferand y on regular square
lattice are marked by arrows, clearly showing thatglimy, is
larger thany on regular square lattice. The inset shqusversusq
for —2=<q=2 in d=2, in good agreement with the theoretical re-
sult wg=po(1+ qo2/2) (continuous ling expected fotg|— 0 [16],
with wo=1.456 ando,=0.45.

(1(N))=N™, 9)

(rIN))e<N™,

respectively. The first average is performed over all SAW
configurations on a single backbone; the second average is
carried out over many backbone configurations. Following
Eq. (6), the exponents, and v, are related to each other by
v, =, /dnyn. The numerical results far, andv, obtained by
the successive slopes technique discussed in Sec. 1B for
regular lattices are reported in Table Il. As an example, Fig.
7 shows the determination @f in d=3.

Accordingly, the scaling variable in chemical space is
I/N™, and the mean structural distribution function, averaged
over many backbone configurations, has the form

(10

<PB(|1N)>OC|£f(|/NV|) (1D

with the scaling function

xgll*dIB, x<1
fi(x)e

| B
x927 9 exp( —cq,x?%),
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TABLE II. Structural parameters for SAWs on the backbone of 10" Fa) " "
percolation clusters at criticality id=2 andd=3, on the square b
and simple cubic lattice, respectively. The values #pr obtained 2 .
directly from the numerical data, are in agreement with the more z 10 -
precise values obtained from the relation= v, /d,,,. The values i; ] g 1 /
for g} =g/ dmn are also in good agreement with the corresponding S 1075t € w0t
values obtained directly from the data. The numerical values for the P ofa S
exponentsg'2 and g5 have been determined using the procedure 10-8 T
described in Appendix A. Note that there is no simple relation 10 1(‘)0
betweeng, andg}; i.e., g5# g5 dmin. The values of§, and 6, are .
consistent, within the present accuracy, with the expressins £/N
=1(1-v) and 5, =1/(1—v,). 10' Fo)
d=2 d=3 5
= 107 &
1 1.34+0.05 1.29-0.05 z T
Yo 1.26+0.05 1.19-0.05 £ 408 :
1 1.565+0.005 1.462-0.005 N =
04 081
o 1.456+0.005 1.317%0.005 10-8 W
2 0.89+0.01 0.91@-0.005 10‘_1 1(‘)0
v, (directly from data 0.778+0.015 0.66-0.01 -~
vo=uld 0.787-0.010  0.662-0.006 r/
g 0.45£0.10 0.66-0.15 FIG. 8. Scaling plots of the distribution functions on the back-
95 =01dmin 0.51+0.11 0.91-0.20 bone ind=2, for N=39 and 40, averaged overBL0® configura-
g 1.6+0.16 1.95-0.17 tions. (a) 1{Pg(I,N)) versusl/N": The dashed line has the slope
g5 1.26+0.18 2.96-0.18 1.90 and corresponds to the ansatz @¢) for x<1; the continu-
5 9.5+0.5 12+0.5 ous line is a fit with the ansatz Eq12) for x>1, yielding g}
5 4.85+0.20 3.1-0.2 =1.4+0.4, $=9.5+0.5, andc,;=0.09+0.01. The inset shows
. . 1:0. - e
I(Pa(1,N)) = b (0B ~U(Pg(1,N)) exd(B1/ N")*]

Equivalently, inr space, the scaling variable igN"r, and
one has

1
(PB(r,N)>0<Ff(r/N”f) (13

with

r B
X914 x<1

fir(x) (14

r B
x92+ 9 exp(— cq  X%), x>1.

Both distribution functions are normalized according to

JodI{Pg(I,N))=1 and[{dr(Pg(r,N))=1.

0.90 \\-...“’!
v o LL

1L
10 0.85
000 004

(B(Ny) Uy

100} «
10°

FIG. 7. The mean topological end-to-end distafidN) ) versus
N for SAWs on the backbone of critical percolation clustersdin
=3 averaged over 8 10* backbone configurations. In the inset, the
successive slopes =d In{I(N))/dIn N are plotted versus M. A
linear extrapolation of the points to the limitN./~0 yields our
estimater;=0.910+ 0.005.

=b,(I/N") versusblll‘s'I/N”l, with our estimate of the crossover
value z,=0.21, according to the procedure described in Appendix
A, yielding the more precise estima®+d|‘3=3.05i0.15 (con-
tinuous line. (b) r(Pg(r,N)) versusr/N*r: The dashed line has the
slope 2.15 and corresponds to the ansatz (E4) for x<1; the
continuous line is a fit with the ansatz Ed.4) for x>1, yielding
g5=1.46+0.4, 5,=4.9:0.3, and c,,=0.79:0.10. The inset

r B
shows  r(Pg(r,N))=b"%""">(QB,)~1r(Pg(r,N))exd b}t/
N )% ]=b,(r/N"r)% versusbrw'r/N”r with our estimate of the
crossover valug,=0.25, according to the procedure described in
Appendix A, vyielding the more precise estimag-fé+d?:2.9
+0.15(continuous ling

The numerical results for the distribution functionsdn
=2 andd=3 are shown in Figs. 8 and 9, respectively, in
both | andr space. The values for the exponemtsand v,
=, /di, reported in Table Il are used in the scaling vari-
ables. For the determination of the exponegis g}, g7,
and g5, according to Eqs(12) and (14), we use the previ-
ously reported values of the fractal dimensiaifs and d?
[26]. The exponentsy; and g} can be estimated directly
from the slope off; and f, in the double logarithmic plots.
Sinceg} andg] are related by =g',dmi, [15], a more pre-
cise estimate fog} can be derived from the estimate fi.

The determination of), andg} is more difficult, since both
exponents occur in the nondominant part and are masked by
the exponential. Therefore it requires the use of the slightly
more involved numerical procedure discussed in Appendix A
(see the insets of Figs. 8 and 9 fd=2 andd=3, respec-
tively). The numerical results we obtain fgf, gb, g}, and

g, are reported in Table Il. Regarding the exponential fac-
tors, our results for the exponends and 6, are consistent,
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10' f () ' ' merical results suggest that id=2 the relations g'l
- /,A = (7q-1—1)/v andg;=(yq-1—1)/v, hold, where the to
~ 1072 e some extent arbitrary choice ¢f,—, is motivated by the fact
5 " ~ — that g=1 describes the annealed case of the whole SAW
g 10°5 § o / ensemble. However, id=3 these relations are not satisfied
~ T ke by the present numerical results.
0.2 0.4 08 1
10 = "’/:”c-)”; IV. CONCLUDING REMARKS
NV We have studied structural properties of SAWs on the
, ' backbone of the incipient percolation cluster in batk 2
10" f(v) and d=3, applying exact enumeration techniques. Our re-
i sults suggest that SAWSs display multifractal behavior,
~ 1072 caused by the underlying multiplicative process yielding an
E i infinite hierarchy of generalized coordination numbess
£ 10-5: and enhancement exponenjg describing the moments
" s (CR g) of the total number of SAWs of lengtk. The present
108 results resolve previous inconsistencies regarding the sug-

e 100 gested relation,uper.C.: P, Wherg p. is the percolation
threshold of a specific regular lattice, apdand ¢ c are the
r/NY corresponding effective coordination numbers of SAWSs for
the ordered case and on the incipient percolation cluster, re-
spectively. We find that this relation is accurately obeyed on
the square and simple cubic lattice by identifyipg

FIG. 9. Scaling plots of the distribution functions on the back-
bone ind=3, for N=39 and 40, averaged overaL0® configura-
tions. (@) 1{Pg(l,N)) versusl/N": The dashed line has the slope

2.02 and corresponds to the ansatz @) for x<1; the continu- ~— #1-
ous line is a fit with the ansatz Eq12) for x>1, yielding g'2
=1.3+0.6, 6=12.0£0.5, andc3;=0.06+0.01. The inset shows ACKNOWLEDGMENTS
= _ n(@h+dPys - U8y a1
I(Pg(I.N)) = b2 ™ (QB)) "1 (Pg(I,N)) exp(b™I/N")?] We thank A. Blumen, S. Edwards, and P. Grassberger for

=by(I/N")? versusb;"”I/N", with our estimate of the crossover very useful discussions. Financial support from the German-
valuez,=0.4, according to the procedure described in Appendix A,|sraeli Foundatio{GIF), the Minerva Center for Mesoscop-
yielding the more precise estimage+dp'=3.31=0.15(continuous s, Fractals, and Neural Networks, and the Deutsche Fors-
line). (b) r(Pg(r,N)) versusr/N"r: The dashed line has the slope chyngsgemeinschaft is gratefully acknowledged. M.P.
2.78 and corresponds to the ansatz Bdf) x<1; the continuous g ratefylly acknowledges the Alexander von Humboldt foun-

line is a fit with the ansatz Eq14) x>1, yielding gr2=~2.3i 0.6, dation (Feodor Lynen prograjrfor financial support.
6,=3.5=0.5, andc3,=0.88+0.10. The inset shows(Pg(r,N))

pdy 16 - 15¢ v V)
=b!%2" "% (B,) ~Ir(Pg(r,N))exd (b T/N") ] =b, (r/N") APPENDIX A: IMPROVED PROCEDURE
versusbrll‘s'r/N”r with our estimate of the crossover valae=0.5, FOR THE DETERMINATION OF g,
yielding the more precise estimagg+ d?=4.83t 0.15(continuous ) |
line). The procedure used for extracting the exponeptsg,,

andg}, describing the scaling form of the structural distri-

within the present accuracy, with the expressighs 1/(1  bution functions, is an improved version of the procedure by
— ) and 8,=1/(1—v,), respectively. Wittkop et al. [37] (cf. [38]) and is illustrated here for the

As discussed in Sec. Il B, for regular lattices the expo-CaS€ (_)f regular lattices. The distribution function E4).can
nentsg,, ve, andy are related by the des Cloizeaux relation P& written as
0:=(y—1)/ve. Therefore, it is legitimate to ask if a similar OB
“generalized des Cloizeaux” relation holds also for SAWs P(r,N)= — f(r/N"F), (A1)
in percolation. Since the enhancement expongntlepends r
onq, it is necessary to find out whether the exponentand

: with Q=27 in d=2 andQ =4 in d=3 and the scalin
g} as well asy, andg} depend org. To this end we gegt)ar- function f(:) defined as ™ 9

alize the averageél (N)) and (r(N)) to (I9(N))¥ocN?i
and (ri(N))X<N"”. Since this is equivalent to studying x9
the quantitieg [19Pg(1,N)d17¥9 and[ [r9Pg(r,N)dr], re- T0=1 yortd exp( —bx?), x>7
spectively, andPg(I,N)) and(Pg(r,N)) scale withl/N" ’ ’
and r/N”r, (19(N))¥ and (r9(N))Y4 must also scale with where 5=1/(1— v). The actual value of the crossoveis
I/N" and r/N*r, respectively. Therefore{? =1, and »¥  determined from the numerical results. The const@nésid
=y, for all g, which we confirmed numerically. Further- b can be obtained from the normalization condition
more, we have numerically verified that the exponeﬁlts

andg} (as well asg}, g5, &, andé,) are independent df. J%P(r,N)drzl (A3)
Regarding the generalized des Cloizeaux relation, our nu- 0

1l x<z

(A2)
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and from the second moment 2[ ()
© _ uly”eﬁ 15k o = » . " " = = .
f r2P(r,N)dr=r2(N)=N?"F, (A4) '
0 1
Upon integration of Eqs(A3) and (A4), one gets the exact Yire—1 50 o e .
relations bt R *
0
B 1{ 1 (gz+d bt 4 z91td]-1 (A5) 2l o
== L Z L
Q| spez+d7s B g;+d I
wherel’(u,z) is the incomplete gamma function, and ;
g,+d+2 Z01+d+2 S L ‘.
QB[ Sp(02+d+2)7s s P? +m =1 eft 051 » L
AB) 0
Thus by plotting the distribution function in the caze 10 16 10
>z as y=b9%2" 5 OB) " rP(r,N)exd (bY’r/N*F)?] ver- Ret

susb¥’r/N*F in a double logarithmic plot, the exponems _ o .

can be read off from the relation~ x92+d and adjusted until FIG. 10. The effective coordination numbe,u&neff (circles and
the above relations Eq$A5) and (A6) are satisfied. This (he enhancement exponentg,,, (squaresof SAWs on the back-
method yields much more accurate results than by directipone ind=2 for (8 g=1 and(b) g=2 versus the effective en-
fitting the distribution function itself. The accuracy of the SEMPIe sizeney. The values are obtained by a least-square-fit of
result can be assessed by plottingy=  MCna(Anen/N=(nAqn JN+IN g0, +[(¥4n,,~ DINNIN

_ In[b(g2+d)/5(QB)_1rP(r,N)(b1/‘$r/NVF) _(g2+d)] _ b(r/N”F)‘S versusN, shown ahq,n 4 and 7q,neff_l Versusn g -

1/8 VE H H H
versusb™r/N"F in a double logarithmic plot, from which  torent hackbone configurations and display strong fluctua-
the exponent can be determined and compared with theyjons indicating that the system is not self-averaging. In or-
expected values=1/(1-vg). The procedure can be ex- ger to smooth out these fluctuations, a second average is

tended straightforwardly to study the distribution funCtiO”Sperformed. This second step is a logarithmic average over
(Pg(I,N)) and (Pg(r,N)) of SAWs on the backbone of o Niot/Negs SUDSES39]:

critical percolation clusters.

_ @)\ — N Nafr— 1
APPENDIX B: GENERALIZED Cn,8(d:Nerr) = eXB(IN(Cry B)n 1) = Agn ka,ng N7 e
AVERAGING PROCEDURE (B2

To obtain an estimate of whether the enseniblef back- In Eq. (B2). the limiti _1 d h
bone configurations considered is sufficiently large to ge{.,m.n g. ( )'.t e limiting casene= corresponas to the
convergent results, we analyze the data by a generalized alfMit —0, while the usual averagef. Eq.(7)] is recovered
eraging procedure as follows: The total ensentbleontain-  WHeN Ner =M. The results for the coordination numbers
ing ny, backbone configurations is divided into subsBts “an,; @nd enhancement exponenig,, , are shown in Figs.

containingngg configurations each. The generalized averagd 0@ (for g=1) and 1@b) (for g=2). A dependence of
is then defined as these two values ong indicates that the given ensemble is

too small to obtain the asymptotic values. If, on the contrary,
Ya the ensemble of backbone configurations is sufficiently large,
(Cnp)l= e Z’l (CN,B)iq) : (B  then Iqny, @nd ¥q,n , N0 longer depend ongg. For =1,
this seems to be the case wheg=10°, and forq=2 when
The obtained resulté(:N,B)ffl)ff depend sensitively on the dif- ngs=10"
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